Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmaceutics ; 15(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37765192

RESUMEN

Due to the diverse medicinal and pharmacokinetic properties of turmeric, it is well-known in the therapeutic, pharmaceutic, nutraceutical, cosmetic, and dietary industries. It gained importance due to its multitude of properties, such as wound-healing, anti-inflammatory, anti-oxidant, anti-microbial, cytoprotective, anti-aging, anti-cancer, and immunomodulatory effects. Even though the natural healing effect of turmeric has been known to Indians as early as 2500 BCE, the global demand for turmeric has increased only recently. A major reason for the beneficiary activities of turmeric is the presence of the yellow-colored polyphenolic compound called curcumin. Many studies have been carried out on the various properties of curcumin and its derivatives. Despite its low bioavailability, curcumin has been effectively used for the treatment of many diseases, such as cardiovascular and neurological diseases, diabetes, arthritis, and cancer. The advent of nanobiotechnology has further opened wide opportunities to explore and expand the use of curcumin in the medical field. Nanoformulations using curcumin and its derivatives helped to design new treatment modalities, specifically in cancer, because of the better bioavailability and solubility of nanocurcumin when compared to natural curcumin. This review deals with the various applications of curcumin nanoparticles in cancer therapy and broadly tries to understand how it affect the immunological status of the cancer cell.

2.
Biomed Pharmacother ; 165: 115039, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37364476

RESUMEN

Maytansine is a pharmacologically active 19-membered ansamacrolide derived from various medicinal plants and microorganisms. Among the most studied pharmacological activities of maytansine over the past few decades are anticancer and anti-bacterial effects. The anticancer mechanism of action is primarily mediated through interaction with the tubulin thereby inhibiting the assembly of microtubules. This ultimately leads to decreased stability of microtubule dynamics and cause cell cycle arrest, resulting in apoptosis. Despite its potent pharmacological effects, the therapeutic applications of maytansine in clinical medicine are quite limited due to its non-selective cytotoxicity. To overcome these limitations, several derivatives have been designed and developed mostly by modifying the parent structural skeleton of maytansine. These structural derivatives exhibit improved pharmacological activities as compared to maytansine. The present review provides a valuable insight into maytansine and its synthetic derivatives as anticancer agents.


Asunto(s)
Antineoplásicos , Maitansina , Maitansina/farmacología , Maitansina/uso terapéutico , Microtúbulos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/metabolismo , Tubulina (Proteína)/metabolismo
3.
Biomed Pharmacother ; 163: 114866, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37182516

RESUMEN

Artemisinin (ART) is a bioactive compound isolated from the plant Artemisia annua and has been traditionally used to treat conditions such as malaria, cancer, viral infections, bacterial infections, and some cardiovascular diseases, especially in Asia, North America, Europe and other parts of the world. This comprehensive review aims to update the biomedical potential of ART and its derivatives for treating human diseases highlighting its pharmacokinetic and pharmacological properties based on the results of experimental pharmacological studies in vitro and in vivo. Cellular and molecular mechanisms of action, tested doses and toxic effects of artemisinin were also described. The analysis of data based on an up-to-date literature search showed that ART and its derivatives display anticancer effects along with a wide range of pharmacological activities such as antibacterial, antiviral, antimalarial, antioxidant and cardioprotective effects. These compounds have great potential for discovering new drugs used as adjunctive therapies in cancer and various other diseases. Detailed translational and experimental studies are however needed to fully understand the pharmacological effects of these compounds.


Asunto(s)
Antimaláricos , Artemisininas , Malaria , Humanos , Artemisininas/farmacología , Artemisininas/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico
4.
Biomed Pharmacother ; 162: 114687, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37062215

RESUMEN

Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.


Asunto(s)
Lamiaceae , Neoplasias , Humanos , Extractos Vegetales/farmacología , Plantas/metabolismo , Cinamatos/farmacología , Depsidos/farmacología , Antioxidantes/farmacología , Neoplasias/tratamiento farmacológico , Ácido Rosmarínico
5.
Biomed Pharmacother ; 163: 114783, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37121149

RESUMEN

Anthocyanins are colored polyphenolic compounds that belong to the flavonoids family and are largely present in many vegetables and fruits. They have been used in traditional medicine in many cultures for a long time. The most common and abundant anthocyanins are those presenting an O-glycosylation at C-3 (C ring) of the flavonoid skeleton to form -O-ß-glucoside derivatives. The present comprehensive review summarized recent data on the anticancer properties of cyanidings along with natural sources, phytochemical data, traditional medical applications, molecular mechanisms and recent nanostrategies to increase the bioavailability and anticancer effects of cyanidins. For this analysis, in vitro, in vivo and clinical studies published up to the year 2022 were sourced from scientific databases and search engines such as PubMed/Medline, Google scholar, Web of Science, Scopus, Wiley and TRIP database. Cyanidins' antitumor properties are exerted during different stages of carcinogenesis and are based on a wide variety of biological activities. The data gathered and discussed in this review allows for affirming that cyanidins have relevant anticancer activity in vitro, in vivo and clinical studies. Future research should focus on studies that bring new data on improving the bioavailability of anthocyanins and on conducting detailed translational pharmacological studies to accurately establish the effective anticancer dose in humans as well as the correct route of administration.


Asunto(s)
Antocianinas , Neoplasias , Humanos , Antocianinas/farmacología , Antocianinas/uso terapéutico , Fitoterapia , Flavonoides/uso terapéutico , Fitoquímicos/farmacología , Quimioprevención , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Extractos Vegetales/farmacología
6.
Cancer Cell Int ; 22(1): 386, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482329

RESUMEN

Therapeutic effect of phytochemicals has been emphasized in the traditional medicine owing to the presence of bioactive molecules, such as polyphenols. Luteolin is a flavone belonging to the flavonoid class of polyphenolic phytochemicals with healing effect on hypertension, inflammatory disorders, and cancer due to its action as pro-oxidants and antioxidants. The anticancer profile of luteolin is of interest due to the toxic effect of contemporary chemotherapy paradigm, leading to the pressing need for the development and identification of physiologically benevolent anticancer agents and molecules. Luteolin exerts anticancer activity by downregulation of key regulatory pathways associated with oncogenesis, in addition to the induction of oxidative stress, cell cycle arrest, upregulation of apoptotic genes, and inhibition of cell proliferation and angiogenesis in cancer cells. In this review, we discuss about the anticancer profile of luteolin.

7.
Front Pharmacol ; 13: 926607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188551

RESUMEN

Neuropsychiatric diseases are a group of disorders that cause significant morbidity and disability. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, and conduct disorder. Various medicinal plants are frequently used as therapeutics in traditional medicine in different parts of the world. Nowadays, using medicinal plants as an alternative medication has been considered due to their biological safety. Despite the wide range of medications, many patients are unable to tolerate the side effects and eventually lose their response. By considering the therapeutic advantages of medicinal plants in the case of side effects, patients may prefer to use them instead of chemical drugs. Today, the use of medicinal plants in traditional medicine is diverse and increasing, and these plants are a precious heritage for humanity. Investigation about traditional medicine continues, and several studies have indicated the basic pharmacology and clinical efficacy of herbal medicine. In this article, we discuss five of the most important and common psychiatric illnesses investigated in various studies along with conventional therapies and their pharmacological therapies. For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. Preclinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common psychiatric disorders. The mechanisms of action of the analyzed biocompounds are presented in detail. The bioactive compounds analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in the pharmacotherapy of neuropsychiatric diseases. Although comparative studies have been carefully reviewed in the preclinical pharmacology field, no clinical studies have been found to confirm the efficacy of herbal medicines compared to FDA-approved medicines for the treatment of mental disorders. Therefore, future clinical studies are needed to accelerate the potential use of natural compounds in the management of these diseases.

8.
Cancer Cell Int ; 22(1): 305, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207736

RESUMEN

Plants-based natural compounds are well-identified and recognized chemoprotective agents that can be used for primary and secondary cancer prevention, as they have proven efficacy and fewer side effects. In today's scenario, when cancer cases rapidly increase in developed and developing countries, the anti-cancerous plant-based compounds become highly imperative. Among others, the Asteraceae (Compositae) family's plants are rich in sesquiterpenoid lactones, a subclass of terpenoids with wide structural diversity, and offer unique anti-cancerous effects. These plants are utilized in folk medicine against numerous diseases worldwide. However, these plants are now a part of the modern medical system, with their sesquiterpenoid lactones researched extensively to find more effective and efficient cancer drug regimens. Given the evolving importance of sesquiterpenoid lactones for cancer research, this review comprehensively covers different domains in a spectrum of sesquiterpenoid lactones viz (i) Guaianolides (ii) Pseudoguaianolide (iii) Eudesmanolide (iv) Melampodinin A and (v) Germacrene, from important plants such as Cynara scolymus (globe artichoke), Arnica montana (wolf weeds), Spilanthes acmella, Taraxacum officinale, Melampodium, Solidago spp. The review, therefore, envisages being a helpful resource for the growth of plant-based anti-cancerous drug development.

9.
Oxid Med Cell Longev ; 2022: 5628601, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105486

RESUMEN

Artemisia plants are traditional and ethnopharmacologically used to treat several diseases and in addition in food, spices, and beverages. The genus is widely distributed in all continents except the Antarctica, and traditional medicine has been used as antimalarial, antioxidant, anticancer, antinociceptive, anti-inflammatory, and antiviral agents. This review is aimed at systematizing scientific data on the geographical distribution, chemical composition, and pharmacological and toxicological profiles of the Artemisia genus. Data from the literature on Artemisia plants were taken using electronic databases such as PubMed/MEDLINE, Scopus, and Web of Science. Selected papers for this updated study included data about phytochemicals, preclinical pharmacological experimental studies with molecular mechanisms included, clinical studies, and toxicological and safety data. In addition, ancient texts and books were consulted. The essential oils and phytochemicals of the Artemisia genus have reported important biological activities, among them the artemisinin, a sesquiterpene lactone, with antimalarial activity. Artemisia absinthium L. is one of the most famous Artemisia spp. due to its use in the production of the absinthe drink which is restricted in most countries because of neurotoxicity. The analyzed studies confirmed that Artemisia plants have many traditional and pharmacological applications. However, scientific data are limited to clinical and toxicological research. Therefore, further research is needed on these aspects to understand the full therapeutic potential and molecular pharmacological mechanisms of this medicinal species.


Asunto(s)
Antimaláricos , Artemisia , Aceites Volátiles , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisia/química , Medicina Tradicional , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
10.
Chin Med ; 17(1): 114, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175969

RESUMEN

BACKGROUND: A biennial or perennial plant of the Apiaceae family, Eryngium caeruleum M. Bieb. is traditionally used in medicine as an antitoxic, diuretic, digestive, anti-inflammatory and analgesic drug. This plant is widely distributed in temperate regions around the world. Young leaves of the plant are used in cooking as aromatic cooked vegetables in various local products in Iran. PURPOSE: The current review aimed to highlight complete and updated information about the Eryngium caeruleum species, regarding botanical, ethnopharmacological, phytochemical data, pharmacological mechanisms as well as some nutritional properties. All this scientific evidence supports the use of this species in complementary medicine, thus opening new therapeutic perspectives for the treatment of some diseases. METHODS: The information provided in this updated review is collected from several scientific databases such as PubMed/Medline, ScienceDirect, Mendeley, Scopus, Web of Science and Google Scholar. Ethnopharmacology books and various professional websites were also researched. RESULTS: The phytochemical composition of the aerial parts and roots of E. caeruleum is represented by the components of essential oil (EO), phenolic compounds, saponins, protein, amino acids, fiber, carbohydrates, and mineral elements. The antioxidant, antimicrobial, antidiabetic, antihypoxic, and anti-inflammatory properties of E. caeruleum have been confirmed by pharmacological experiments with extracts using in vitro and in vivo methods. The syrup E. caeruleum relieved dysmenorrhea as effectively as Ibuprofen in the blinded, randomized, placebo-controlled clinical study. CONCLUSION: Current evidence from experimental pharmacological studies has shown that the different bioactive compounds present in the species E. caeruleum have multiple beneficial effects on human health, being potentially active in the treatment of many diseases. Thus, the traditional uses of this species are supported based on evidence. In future, translational and human clinical studies are necessary to establish effective therapeutic doses in humans.

11.
Biomed Pharmacother ; 154: 113555, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36027610

RESUMEN

Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a bioactive compound, a natural anthraquinone aglycone, present mainly in herbaceous species of the families Fabaceae, Polygonaceae and Rhamnaceae, with a physiological role in protection against abiotic stress in vegetative tissues. Emodin is mainly used in traditional Chinese medicine to treat sore throats, carbuncles, sores, blood stasis, and damp-heat jaundice. Pharmacological research in the last decade has revealed other potential therapeutic applications such as anticancer, neuroprotective, antidiabetic, antioxidant and anti-inflammatory. The present study aimed to summarize recent studies on bioavailability, preclinical pharmacological effects with evidence of molecular mechanisms, clinical trials and clinical pitfalls, respectively the therapeutic limitations of emodin. For this purpose, extensive searches were performed using the PubMed/Medline, Scopus, Google scholar, TRIP database, Springer link, Wiley and SciFinder databases as a search engines. The in vitro and in vivo studies included in this updated review highlighted the signaling pathways and molecular mechanisms of emodin. Because its bioavailability is low, there are limitations in clinical therapeutic use. In conclusion, for an increase in pharmacotherapeutic efficacy, future studies with carrier molecules to the target, thus opening up new therapeutic perspectives.


Asunto(s)
Emodina , Polygonaceae , Antiinflamatorios , Antioxidantes , Emodina/farmacología , Emodina/uso terapéutico , Humanos , Medicina Tradicional China
12.
Chin Med ; 17(1): 100, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028892

RESUMEN

Propolis, a resinous substance produced by honeybees from various plant sources, has been used for thousands of years in traditional medicine for several purposes all over the world. The precise composition of propolis varies according to plant source, seasons harvesting, geography, type of bee flora, climate changes, and honeybee species at the site of collection. This apiary product has broad clinical applications such as antioxidant, anti-inflammatory, antimicrobial, anticancer, analgesic, antidepressant, and anxiolytic as well asimmunomodulatory effects. It is also well known from traditional uses in treating purulent disorders, improving the wound healing, and alleviating many of the related discomforts. Even if its use was already widespread since ancient times, after the First and Second World War, it has grown even more as well as the studies to identify its chemical and pharmacological features, allowing to discriminate the qualities of propolis in terms of the chemical profile and relative biological activity based on the geographic place of origin. Recently, several in vitro and in vivo studies have been carried out and new insights into the pharmaceutical prospects of this bee product in the management of different disorders, have been highlighted. Specifically, the available literature confirms the efficacy of propolis and its bioactive compounds in the reduction of cancer progression, inhibition of bacterial and viral infections as well as mitigation of parasitic-related symptoms, paving the way to the use of propolis as an alternative approach to improve the human health. However, a more conscious use of propolis in terms of standardized extracts as well as new clinical studies are needed to substantiate these health claims.

13.
Oxid Med Cell Longev ; 2022: 1035441, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677108

RESUMEN

Plants including Rhizoma polgonati, Smilax china, and Trigonella foenum-graecum contain a lot of diosgenin, a steroidal sapogenin. This bioactive phytochemical has shown high potential and interest in the treatment of various disorders such as cancer, diabetes, arthritis, asthma, and cardiovascular disease, in addition to being an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry. This review aims to provide an overview of the in vitro, in vivo, and clinical studies reporting the diosgenin's pharmacological effects and to discuss the safety issues. Preclinical studies have shown promising effects on cancer, neuroprotection, atherosclerosis, asthma, bone health, and other pathologies. Clinical investigations have demonstrated diosgenin's nontoxic nature and promising benefits on cognitive function and menopause. However, further well-designed clinical trials are needed to address the other effects seen in preclinical studies, as well as a better knowledge of the diosgenin's safety profile.


Asunto(s)
Asma , Diosgenina , Neoplasias , Trigonella , Asma/tratamiento farmacológico , Diosgenina/farmacología , Diosgenina/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Fitoquímicos , Extractos Vegetales
14.
Oxid Med Cell Longev ; 2022: 8615242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35509838

RESUMEN

Bergapten (BP) or 5-methoxypsoralen (5-MOP) is a furocoumarin compound mainly found in bergamot essential oil but also in other citrus essential oils and grapefruit juice. This compound presents antibacterial, anti-inflammatory, hypolipemic, and anticancer effects and is successfully used as a photosensitizing agent. The present review focuses on the research evidence related to the therapeutic properties of bergapten collected in recent years. Many preclinical and in vitro studies have been evidenced the therapeutic action of BP; however, few clinical trials have been carried out to evaluate its efficacy. These clinical trials with BP are mainly focused on patients suffering from skin disorders such as psoriasis or vitiligo. In these trials, the administration of BP (oral or topical) combined with UV irradiation induces relevant lesion clearance rates. In addition, beneficial effects of bergamot extract were also observed in patients with altered serum lipid profiles and in people with nonalcoholic fatty liver. On the contrary, there are no clinical trials that investigate the possible effects on cancer. Although the bioavailability of BP is lower than that of its 8-methoxypsoralen (8-MOP) isomer, it has fewer side effects allowing higher concentrations to be administered. In conclusion, although the use of BP has therapeutic applications on skin disorders as a sensitizing agent and as components of bergamot extract as hypolipemic therapy, more trials are necessary to define the doses and treatment guidelines and its usefulness against other pathologies such as cancer or bacterial infections.


Asunto(s)
Metoxaleno , Aceites Volátiles , 5-Metoxipsoraleno , Humanos , Metoxaleno/efectos adversos , Fármacos Fotosensibilizantes , Extractos Vegetales , Rayos Ultravioleta
15.
Artículo en Inglés | MEDLINE | ID: mdl-35251206

RESUMEN

Urtica dioica belongs to the Urticaceae family and is found in many countries around the world. This plant contains a broad range of phytochemicals, such as phenolic compounds, sterols, fatty acids, alkaloids, terpenoids, flavonoids, and lignans, that have been widely reported for their excellent pharmacological activities, including antiviral, antimicrobial, antihelmintic, anticancer, nephroprotective, hepatoprotective, cardioprotective, antiarthritis, antidiabetic, antiendometriosis, antioxidant, anti-inflammatory, and antiaging effects. In this regard, this review highlights fresh insight into the medicinal use, chemical composition, pharmacological properties, and safety profile of U. dioica to guide future works to thoroughly estimate their clinical value.

16.
Oxid Med Cell Longev ; 2022: 3848084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237379

RESUMEN

Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in the treatment of several human diseases.


Asunto(s)
Antialérgicos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Ácido Elágico/farmacología , Taninos Hidrolizables/farmacología , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Sustancias Protectoras/farmacología , Animales , Antialérgicos/metabolismo , Antiinflamatorios/metabolismo , Antineoplásicos/metabolismo , Ácido Elágico/metabolismo , Frutas/química , Frutas/metabolismo , Tracto Gastrointestinal/metabolismo , Humanos , Taninos Hidrolizables/química , Taninos Hidrolizables/metabolismo , Hipoglucemiantes/metabolismo , Fitoterapia/métodos , Extractos Vegetales/metabolismo , Plantas/química , Plantas/metabolismo , Polifenoles/metabolismo , Sustancias Protectoras/metabolismo
17.
Oxid Med Cell Longev ; 2022: 8214821, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198096

RESUMEN

Crocus species are mainly distributed in North Africa, Southern and Central Europe, and Western Asia, used in gardens and parks as ornamental plants, while Crocus sativus L. (saffron) is the only species that is cultivated for edible purpose. The use of saffron is very ancient; besides the use as a spice, saffron has long been known also for its medical and coloring qualities. Due to its distinctive flavor and color, it is used as a spice, which imparts food preservative activity owing to its antimicrobial and antioxidant activity. This updated review discusses the biological properties of Crocus sativus L. and its phytoconstituents, their pharmacological activities, signaling pathways, and molecular targets, therefore highlighting it as a potential herbal medicine. Clinical studies regarding its pharmacologic potential in clinical therapeutics and toxicity studies were also reviewed. For this updated review, a search was performed in the PubMed, Science, and Google Scholar databases using keywords related to Crocus sativus L. and the biological properties of its phytoconstituents. From this search, only the relevant works were selected. The phytochemistry of the most important bioactive compounds in Crocus sativus L. such as crocin, crocetin, picrocrocin, and safranal and also dozens of other compounds was studied and identified by various physicochemical methods. Isolated compounds and various extracts have proven their pharmacological efficacy at the molecular level and signaling pathways both in vitro and in vivo. In addition, toxicity studies and clinical trials were analyzed. The research results highlighted the various pharmacological potentials such as antimicrobial, antioxidant, cytotoxic, cardioprotective, neuroprotective, antidepressant, hypolipidemic, and antihyperglycemic properties and protector of retinal lesions. Due to its antioxidant and antimicrobial properties, saffron has proven effective as a natural food preservative. Starting from the traditional uses for the treatment of several diseases, the bioactive compounds of Crocus sativus L. have proven their effectiveness in modern pharmacological research. However, pharmacological studies are needed in the future to identify new mechanisms of action, pharmacokinetic studies, new pharmaceutical formulations for target transport, and possible interaction with allopathic drugs.


Asunto(s)
Crocus/química , Fitoquímicos/farmacología , Animales , Humanos , Medicina Tradicional , Fitoquímicos/química , Fitoquímicos/uso terapéutico
18.
Oxid Med Cell Longev ; 2022: 3079577, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154564

RESUMEN

Andrographolide (ANDRO), a bitter diterpene lactone found in Andrographis paniculata (Burm.f.) Nees, possesses several biological effects such as antioxidant, anti-inflammatory, and organo-protective effects. Scientific reports suggest that it also has neuroprotective capacity in various test systems. The purpose of this review was to synthesize the neuropharmacological properties of ANDRO and highlight the molecular mechanisms of action that highlight these activities. A careful search was done in PubMed and Google Scholar databases using specific keywords. Findings suggest that ANDRO possess neuroprotective, analgesic, and antifatigue effects. Prominent effects were stated on neuro-inflammation, cerebral ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis, and brain cancer in mice and rats. Furthermore, ANDRO and its derivatives can enhance memory and learning capacity in experimental animals (rats) without causing any toxicity in the brain. Thus, ANDRO may be one of the most promising plant-based psychopharmacological lead compounds for new drug development.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Analgésicos/uso terapéutico , Andrographis paniculata/química , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Diterpenos/uso terapéutico , Lactonas/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Fitoterapia/métodos , Extractos Vegetales/uso terapéutico , Animales , Modelos Animales de Enfermedad , Ratones , Ratas , Resultado del Tratamiento
19.
Oxid Med Cell Longev ; 2022: 6025900, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154569

RESUMEN

The use of phytochemicals is gaining interest for the treatment of metabolic syndromes over the synthetic formulation of drugs. Senna is evolving as one of the important plants which have been vastly studied for its beneficial effects. Various parts of Senna species including the root, stem, leaves, and flower are found rich in numerous phytochemicals. In vitro, in vivo, and clinical experiments established that extracts from Senna plants have diverse beneficial effects by acting as a strong antioxidant and antimicrobial agent. In this review, Senna genus is comprehensively discussed in terms of its botanical characteristics, traditional use, geographic presence, and phytochemical profile. The bioactive compound richness contributes to the biological activity of Senna plant extracts. The review emphasizes on the in vivo and in vitro antioxidant and anti-infectious properties of the Senna plant. Preclinical studies confirmed the beneficial effects of the Senna plant extracts and its bioactive components in regard to the health-promoting activities. The safety, side effects, and therapeutic limitations of the Senna plant are also discussed in this review. Additional research is necessary to utilize the phenolic compounds towards its use as an alternative to pharmacological treatments and even as an ingredient in functional foods.


Asunto(s)
Antiinfecciosos/efectos adversos , Antioxidantes/efectos adversos , Fitoquímicos/efectos adversos , Extractos Vegetales/efectos adversos , Plantas Medicinales/química , Senna/química , Animales , Etnofarmacología/métodos , Humanos , Medicina Tradicional/efectos adversos , Fitoterapia/efectos adversos , Componentes Aéreos de las Plantas/química , Raíces de Plantas/química
20.
Oxid Med Cell Longev ; 2022: 9366223, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222807

RESUMEN

Present study established the biological potential of Schweinfurthia papilionacea, Tricholepis glaberrima and Viola stocksii extracts for their potential applications in drug formulations. Initially, FTIR was performed to ascertain functional groups and then plant extracts were prepared using five solvents depending on the polarity. Total phenolic contents were observed in the range of 36.36 ± 1.08 mg GAE/g to 95.55 ± 2.46 mg GAE/g while flavonoid contents were found in the range of 10.51 ± 0.25 mg QE/g to 22.17 ± 1.79 mg QE/g. Antioxidant activity was determined using TRP, CUPRAC, TAC and DPPH assays and was recorded highest in S. papilionacea followed by T. glaberrima extracts. TPC and TFC were found to be strongly correlated with TRP (r > 0.50), CUPRAC (r > 0.53) and DPPH (r = 0.31 and 0.72) assay while weakly correlated with TAC (r = 0.08 and 0.03) as determined by Pearson correlation analysis. Anticancer activity showed that S. papilionacea chloroform extracts possess highest cell viability (85.04 ± 4.24%) against HepG2 cell lines while T. glaberrima chloroform extracts exhibited highest activity (82.80 ± 2.68%) against HT144 cell lines. Afterwards, highest PXR activation was observed in T. glaberrima (3.49 ± 0.34 µg/mL fold) at 60 µg/mL and was correlated with increase in CYP3A4 activity (15.0 ± 3.00 µg/mL IC50 value). Furthermore, antimalarial activity revealed >47600 IC50 value against P. falciparum D6 and P. falciparum W2 and antimicrobial assay indicated highest activity (32 ± 2.80 mm) in S. papilionacea against C. neoformans. At the end, GC-MS analysis of n-hexane plant extracts showed 99.104% of total identified compounds in T. glaberrima and 94.31% in V. stocksii. In conclusion, present study provides insight about the different biological potentials of S. papilionacea and T. glaberrima extracts that rationalize the applications of these extracts in functional foods and herbal drugs for the management of oxidative-stress related diseases, antimicrobial infections and liver and skin cancer.


Asunto(s)
Antineoplásicos/análisis , Antioxidantes/análisis , Citocromo P-450 CYP3A/metabolismo , Magnoliopsida/química , Receptor X de Pregnano/metabolismo , Antiinfecciosos/análisis , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Flavonoides/análisis , Hongos/efectos de los fármacos , Humanos , Magnoliopsida/clasificación , Magnoliopsida/metabolismo , Metabolómica , Fenoles/análisis , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA